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Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The
aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat
recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the
USA.However, in China they have a short development period ca. 10 years. Unlike CO2 capture andCO2-EOR technologies that are
already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale.
This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects
worldwide.Then it focuses on their developments inChina in the last decade.Themain research projects, international cooperation,
and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and
prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the
CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.

1. Introduction

Fossil fuels, especially coal that is rich in carbon, constitute
the highest proportion of primary energy in China [1]. In
recent years, the rapid urbanization and development of
industries including power plants, cement factories, steel
plants, biotransformation, and fossil fuel transformation
plants, which are highly dependent on large consumption
of fossil fuels, have been a great challenge to the Chinese
environment [2, 3]. Since the winter of 2012/2013, most
cities in China have been faced with serious atmospheric
pollution from a haze formed from a combination of SO2,
NOx, and inhalable particles within the mist, containing fine
particle concentrations of up to ca. 900𝜇g/m3 [4]. Automo-
bile exhausts, industrial emissions, waste incineration, and
fugitive dust from construction sites are the main sources of
the haze. Based on statistical data from Beijing, reported by

ChinaCentral Television (CCTV) in 2014, haze particles from
automobile exhausts contributed 22.2%, while the burning
of coal, dust, and industrial emissions accounted for pro-
portions of 16.7%, 16.3%, and 15.7%, respectively. Therefore,
a reduction in the emissions from coal and industry has
become the key to improving the quality of the environment.

The increase in the concentration of greenhouse gases has
had a large impact on global climate change, since industri-
alization. Many countries have set targets for reducing the
emissions of greenhouse gases in order to mitigate global
warming. Among them, top on the list of CO2 emissions in
the world, China aims at reducing 40%–45% of its CO2 emis-
sions per unit GDP by 2020, based on the 2005 level [5–7].
This requires considerable changes not only in the framework
of fossil fuel consumption, but also in the development of
renewable energy from wind, solar, geothermal, and so on,
together with an enlargement in the area covered by forests
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and innovations in technologies that can enable permanent
storage of the CO2 underground.

CO2 emissions in China come mainly from the com-
bustion of fossil fuels (90%) and during the process of
cement manufacturing (10%). For example, in 2012, 68% of
the emitted CO2 was sourced mainly from the combustion
of coal, while 13% came from oil and 7% from natural gas
[8]. According to the statistics, annual emissions of CO2
from large stationary point sources, that is, >0.1Mt/year,
amount to 3.89 GtCO2, which accounts for 67% of the total
emissions. Among which, 72% is from power stations [9].
This demonstrates that a reduction of the CO2 emissions
from the large stationary point sources is the key to realizing
China’s target [10, 11].

China’s main target for the transformation in its energy
framework is to reduce the combustion of coal, while increas-
ing the supply of natural gas and other clean energy, and
controlling the emissions of CO2, SO2, NOx, and so on.
CO2 capture and sequestration (CCS) and utilization (CCUS)
technologies can be applied to store CO2 underground
effectively, thus reducing its emission into the atmosphere.
This technology is now highly developed and is likely to play
a significant role in China, especially when the operation
costs are reduced. This paper reviews the state of the art
of CCS and CCUS technologies worldwide while paying
more attention on its status and development in China. The
mature technology will be examined in various engineering
projects.Therefore, this paper considers the state of operation
of CCS and CCUS projects in detail and concludes by
presenting the likely challenges to be experienced through
the industrialization of these projects in China. Due to space
limitation, it has not been possible to include a review of the
current research status on the conversion of CO2 to produce
some commercial products or its use in the food industry,
for example, as an additive in beverages or as a preservative
for fruits and vegetables. Henceforth, only its utilization for
geologic and geoengineering purposes such as EOR, ECBM,
ESG, and EGR has been considered in this paper.

2. Worldwide Development of CCS and CCUS

The CCS technology is a means to control emissions of
CO2 that are captured from different processes including
precombustion, postcombustion, and oxy-fuel combustion.
The stages of a CCS project can be divided into (1) CO2
capture, (2) CO2 transportation, (3) CO2 injection, and (4)
postinjection of CO2 [12–19].

In the short term, depending on the purpose of the CCS
project, CO2 can be stored in different geological sites, includ-
ing deep saline formations, depleted oil or gas reservoirs,
deep unmineable coal seams, and shale formations, to reduce
the CO2 emissions [20, 21], Figure 1. In comparison with the
pure CCS technology, CCUS technology pays more attention
to utilization (U) of the captured CO2 while sequestration
(S) plays a secondary role. CCUS can reduce the cost of
sequestration and bring benefits by enhancing the production
of hydrocarbons or heat energy, thus becoming very popular
in recent years. Based on the purpose of the CO2 injec-
tion, a number of related technologies have been developed

including (1) Enhanced Oil Recovery (EOR), (2) Enhanced
Coalbed Methane Recovery (ECBM), (3) Enhanced Gas
Recovery (EGR), (4) Enhanced Shale Gas Recovery (ESG),
and (5) Enhanced Geothermal System (EGS).

The engineering projects for both CCS and CCUS tech-
nologies are systematically complicated, with their success
depending on rigorous research in engineering and science
disciplines including geology, geoengineering, geophysics,
environmental engineering, mathematics, and computer sci-
ences. In addition, key to success in site selection for any such
a project demands strict considerations of safety, economy,
environment, and public acceptance at all levels of operation,
that is, countrywide, basin-wide, regional, or subbasin levels
[22–26], Figure 2. Although CCS and CCUS technologies
share similarities in site selection, each will induce a series of
different physical and chemical responses in the underground
porous or fractured rock formations, in terms of the existing
local hydrological (H), thermal (T), mechanical (M), and
chemical (C) fields [27–29], Figure 2. Coupling of the THMC
processes during and after CO2 injection related to CCS and
CCUS technologies has become a research hotspot in recent
years [26, 30–33].The two technologies, however, haveminor
differences, in terms of purpose, storage duration, injection
depth and rate, fluid and reservoir types, scheme of drilling,
completion and monitoring, and so on.

2.1. CCS. CCS is a viable option for significantly reducing
CO2 emissions from large-scale emission sources. When its
only purpose is for CO2 sequestration, the storage sites may
include deep saline formations, deep unmineable coal seam,
depleted oil or gas reservoir, and rock salt caverns [35–
38]. This technology is mature but still very expensive for
widespread commercial application.

2.2. CCUS: CO2-EOR. The first CO2-EOR field test was held
in 1964 in Mead Strawn Texas, in the USA. Since the 1970s,
CO2 has been used on a commercial scale for oil production
projects [20, 21]. Up to the present time, there have beenmore
than 100 CO2-EOR projects in operation. Among them, the
CO2-EORproject inWeyburn, Canada, is themost successful
example. It uses mixed gases separated from natural gas
production, coal gasification, and coal power from the Great
Plains Synfuels Plant near Beulah, North Dakota, USA [39].
The injection gas is mainly composed of CO2 (96.8%), plus
H2S (1.1%) and a minor amount of hydrocarbons that are
piped to the Weyburn Basin through a pipeline 339 km in
length [7]. The purpose of the project is to inject 2 million
tons of CO2 into the depleting oil reservoir over a 20-year
period, in order to increase oil recovery to 130 million barrels
and to extend the production of oil in this oilfield to 25 years
[40].

2.3. CCUS: CO2-ECBM. The conventional method to pro-
duce coalbed methane is to decrease the pressure in the
coalbed reservoir, making the methane desorb from the
matrix. However, the recovery of coalbed methane produc-
tion using this method is less than 50%. The alternative is
to desorb more CH4 from the coalbed matrix by injecting
gases including CO2 or N2 [41–44]. Studies on enhancing
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Figure 1: Schematic diagram of the CCUS technology in different geological reservoirs for both long and short-term sequestration of CO2.

coalbedmethane byCO2 injection started in the 1990s [7, 45].
When CO2 is injected in the coalbed layer, both the gaseous
and adsorbed-state of CH4 and CO2 will exist in equilibrium
[46]. Because the coalbed has a much stronger adsorption
capacity for CO2 than CH4, the injection of CO2 will make
the adsorbed CH4 desorb, thus enhancing the CH4 recovery.

A proportion of the injected CO2 will be stored in the coalbed
formation, making it difficult for it to leak to the surface.
Therefore, this technology can bring both economic benefits
and also guarantee the safe storage of CO2 [47, 48].

The successful injection of CO2 to enhance coalbed
methane recovery has been proved by many experimental
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Figure 2: Schematics of the two main topics, that is, the site selection system (1) and the THMC responses (2) associated with CCS and
CCUS technologies.

and numerical studies. However, the production efficiency
is strongly site-dependent, in relation to the permeability
of the coalbed matrix, production history, gas transporta-
tion process, maturation of coal, geological configuration,
completion scheme, hydraulic pressure, and so on [42–
44, 49–52]. Nevertheless, the maturity of its commercial
application is still very low. Pilot-scale CO2-ECBM projects
so far include those in Alberta, Canada, which started in 1997,
the Burlington project in the San Juan Basin of the USA, the
RECOPOL project that started in 2001, the Yubari project in
Japan, and the Qinshui basin project in China that started in
2002 [53].

2.4. CCUS: CO2-EGR. Studies on injectingCO2 into depleted
gas reservoirs to enhance gas recovery started in the 1990s
[54]. Unlike the CO2-EOR technology, CO2-EGR technology
is still at the pilot-scale stage. Its efficiency is highly dependent
on reservoir type, temperature and pressure conditions, het-
erogeneity, production strategy, and so on [55–60]. For some
CO2-EGR projects, the gas recovered can reach 10%, while
other projects have seen less or no enhancement [61–63].The
rapid breakthrough of CO2 in a production well, resulting in
a high concentration of CO2, restricts the production of pure
natural gas [64]. Since 1999, the USA has carried out a pilot
project of CO2-EGR in Rio Vista. The Netherlands injected
60 kilotonnes of CO2 into a depleted gas reservoir in the
K12B project during 2004 and 2009 [7]. The CLEAN project
in Germany started a CO2-EGR project in the Altmark gas
fields in 2009; however, public protests have prevented CO2
injection on the site [65]. Many other countries including
Australia and Norway are also positively developing this
technology [64, 66–74].

2.5. CCUS: CO2-ESG. The USA has been carrying out shale
gas desorption since 1821. However, limited development of
the technology made this process procedurally cumbersome
and substantively difficult to apply before the 21st century.
In 2000, shale gas contributed only 1% of the whole natural
gas supply, while, by the end of 2011, this proportion had
increased to 30% due to a breakthrough in horizontal drilling
and horizontal multistaged fracturing technology. The revo-
lution of shale gas in theUSA is changing the energy structure
of the world [75].

Encouraged by the successful application of CO2 in oil
and gas recovery, its application in aiding the production
of shale gas began in recent years [76–81]. There has also
been progress in replacing water by supercritical CO2 as the
injection fluid in the fracturing technology [82–86].However,
this process is still in the very early exploration stages.

2.6. CCUS: CO2-EGS. The first study of EGS technology
started in Fenton Hill, USA, in 1970 [87]. Since then, many
other countries, including France, Germany, Austria, Italy,
Japan, and Australia, have paid attention to the development
of this technology. The conventional EGS technology uses
water as the injection fluid and circulation media. Based on
the research in [88], CO2 is now regarded as a more favorable
circulation fluid compared with water because of its large
compressibility and expansibility. This idea has already been
supported by many studies (e.g., [89–93]).

The application of CO2 in a geothermal system is not
restricted to the hot dry rock reservoirs but also includes
the conventional hydrothermal reservoirs [38, 91, 94]. The
injection of CO2 can enhance the efficiency of reinjecting the
hot wastewater by improving the porosity and permeability
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through the activated water-rock geochemical reactions [95].
Besides being the main circulation fluid, CO2 can also be
regarded as a pressurized hydraulic fluid in the reservoir.
Injection of CO2 in a hydrothermal or hot dry rock reservoir
can maintain the reservoir pressure, promoting the flow
rate of the in situ water towards the production well, thus
enhancing the heat recovery and even the recovery of the
CH4 dissolved in the aquifer water [96–99]. Reference [38]
described this process as theCO2-AGES (CO2-aided geother-
mal extraction system) in which three stages are involved:
(1) the production of hot water when CO2 is used as the
pressurized hydraulic fluid; (2) two-phase fluid flow in the
production well after the CO2 breakthrough; and (3) and as
a circulation fluid, when CO2 fills the production well, which
is similar to CO2-EGS.

3. CCS and CCUS Engineering
Projects Worldwide

By the end of 2016, based on the statistics of Global Status
2016, there were 38 large-scale CCS + CCUS projects in
operation or under construction and planning. Among them,
17 projects are located in North America (12 projects in the
United States and 5 in Canada); 12 projects in Asia (8 in
China, 2 in South Korea, 1 in Saudi Arabia, and 1 in United
Arab Emirates), 5 in Europe (2 in Norway, 2 in United
Kingdom, and 1 in the Netherlands), 3 in Australia, and 1 in
Brazil. Among the 15 projects that are in operation, 12 projects
are related to CO2-EOR and the other 3 projects are pure CO2
sequestration. There are 66 pilot-scale CCS + CCUS projects
of which 22 are in operation, 5 under construction, 5 at the
planning stage, and 34 have just been completed.

Among the 70 pilot-scale engineering CCUS projects
worldwide, based on their distribution by regions or coun-
tries, 22 are located in North America, 1 in South America,
22 in Europe, 20 in Asia, 4 in Australia, and 1 in South Africa;
see Figure 3 for more details.

There are still no concrete CO2-ESG and CO2-EGS
projects anywhere in the world. Only a few countries,
including the USA, Canada, China, and Argentina, can
commercially produce shale gas. At the end of 2015, the daily
shale gas output in the USA, Canada, China, and Argentina
had reached 37, 4.1, 0.5, and 0.07 Bcf, respectively [100, 101].
Shale gas production in the USA abruptly increased after
2000, while Canada and China successfully produced shale
gas for the first time in 2008 and 2012, respectively. There
are now more than 100,000 shale gas drilling wells in the
USA. In China, however, only about 600 wells have been
drilled in the last few years [102]. The EGS technology is
still at the research and development stage. Nevertheless,
there are some experimental EGS plants and pilot projects,
for example, at Fenton Hill, Coso, and Desert Peak in
the USA, Bad Urach, Neustadt-Glewe, Bruchsal, Landau,
and Unterhaching in Germany, and Soultz-sous-Forets and
Bouillante in France [87]. Substantially higher research,
development, and demonstration efforts are needed to ensure
EGS technology becomes commercially viable in the near
future.
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Figure 3: Global distribution of pilot-scale CCUS engineering
projects based on project purpose and reservoir types, data sourced
from http://www.globalccsinstitute.com/.

4. Current Status of CCS and
CCUS Technologies in China

Since 2005, CCS has been listed as a frontier technology
in China’s mid-long term technical development program
in order to realize the goal of zero emissions from fossil
fuel energy [103]. Meanwhile, more attention has been paid
to CCUS technology, especially CO2-EOR and CO2-ECBM
[104–107]. Between 2006 and 2015, the Ministry of Science
and Technology of China (MOST) funded eight National
Basic Research Programs (also known as the 973 Program)
and State High-Tech Development Plans (commonly known
as the 863 Program). Three of these programs were related
to CO2-EOR and the others to the CO2 capture technol-
ogy, shale gas recovery, and the hot dry rock systems.
The National Natural Science Foundation of China (NSFC)
also generously funded basic research related to CCS and
CCUS.

Based on the incomplete statistics of the research projects
funded by MOST and NSFC during 2005–2016 (Figures 4
and 5 and Table 1), the distribution of funding for different
aspects of CCS and CCUS is shown as follows: (1) CCS (32
projects), of which all the 7 projects funded by the MOST
were related to CO2 capture technology. The 23 projects
funded by the NSFC and 1 project funded by the Ministry
of Land and Resources were concerned with CO2 storage;
(2) CCUS: CO2-EOR (18 projects), of which 6 projects were
funded by the MOST and 10 by the NSFC; (3) CCUS: CO2-
ECBM (22 projects), of which 3 projects were funded by the
MOST, and 17 by theNSFC; (4) CCUS:CO2-EGR (4 projects);
(5) CCUS: CO2-ESG (4 projects); and (6) CCUS: CO2-EGS (7
projects).

Several international cooperation research projects were
also developed, including NZEC between China and Europe,
CAGS between China and Australia, and CCERC between
China and the USA; see Table 2 for further details.
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10 Geofluids

Table 2: China’s international collaboration on CCUS projects during 2005–2016.

Name of projects Main responsible institutes in
China Funding sources Funding

China-EU Cooperation on
Near Zero Emissions Coal
(NZEC)

The Administrative Center for
China’s Agenda 21 (ACCA21)

etc.

MOST, EU, UK Environment,
Food and Rural Affairs
(DEFRA) 2007–2009

4.5 million US$

China-Australia Geological
Storage of CO2 (CAGS)

MOST, Australian
Department of Resources,

Energy and Tourism
2010–2018

>4.0 million US$

China-Italy CCS project MOST, Italian Ministry of
Environment 2010–2012 —

China-Netherlands
CO2-ECBM and CO2 saline
aquifer storage exchange
center

Institute of Coal Chemistry
(CAS) etc.

Ministry of Economic Affairs
2008- —

China-U.S. low emission
technology of IGCC

Institute of Engineering
Thermophysics (CAS) etc.

MOST, U.S. DOE
2010–2012 —

China-U.S. Clean Energy
Research Center (CCERC)

Huazhong University of
Science and Technology

MOST, U.S. DOE
2010–2015 2 million US$/year

China-Germany CCUS
project Sichuan University etc. NSFC, DFZ

2010–now —

EOR ECBM EGR ESG EGS CCS
Types of CCUS and CCS

MOST
NSFC
Others

0

5

10

15

20

N
um

be
r

Figure 4: Research projects of CCS and CCUS in China during
2005–2016 based on Table 1.

4.1. CCS. China’s Geological Survey compiled a series of
atlases relating to the storage capacity and suitability eval-
uation of China and its main sedimentary basins [25, 108–
112]. Combined with a selection indicator evaluation system
for potential storage sites, the standardization of the CCS in
China has a good foundation [20, 21, 113, 114]. A preliminary
evaluation of the CO2 storage potential in the saline forma-
tions at a depth of 1–3 km showed a capacity of 1.435 × 1011
tonnes, andmost parts of the Huabei plain and Sichuan Basin
can be regarded as favorable storage sites [115, 116]. Based on

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year
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r o
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ro
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Figure 5: Different types of CCUS research projects inChina during
2006–2016 based on Table 1.

the studies on CO2 sequestration in saline formations [117–
124], the first full chain CCS project in China was successfully
launched in the Ordos Basin with a storage target of 0.1
million tons of CO2 injected in 2010 [125–130].

4.2. CCUS: CO2-EOR in China. The theoretical CO2 storage
capacity of depleted onshore oil reservoirs is estimated to be
3.78 gigatons of CO2 [131]. Conservative estimates reveal that
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Daqing Recovery 10%

Daqing

Jiangsu Fumin area 1500 tons increased
WAG test Fumin #14 zone

Jilin

1420 tons increased

Shengli
Liaohe

200 tons/well increased

Subei Water content < 70%

Jilin Hei #59 zone Recovery 13%

Zhong
yuan Wen #88-Ping #1

Shayixia 109.6 kilotons increased
Dagang Gang #282

Oilfields Type of field tests Field location Experimental results

Changqing Qiaojiawa of Jingbian
and Wuqi

Recovery 4–9%
＃／2-EOR pilot test

＃／2-EOR pilot test

＃／2-EOR pilot test

＃／2 huff-puff test

＃／2 huff-puff test

＃／2 huff-puff test

＃／2 huff-puff test

＃／2 test in heavy oil

＃／2 immiscible
flood test

＃／2 pilot test

＃／2 pilot test

1960

1970

1980

1990

2000

2010

2020

0.5% 1.2%

Figure 6: Development of CO2-EOR pilot tests in several oilfields in China since the 1960s.

about 70% of the oil production comes from nine oilfields,
that is, Changqing, Tarim, Daqing, Shengli, Yanchang, Bohai,
Liaohe, Zhongyuan, and Jilin. However, most of them are
facing or will soon be depleted after many years’ produc-
tion. Under these circumstances, CO2-EOR technology may
become an effective option to produce more oil from the
depleting reservoir. In fact, China started the development
of CO2-EOR technology in the 1960s in several districts of
the Daqing oilfield including Ta #112, Fang #48, and Shu
#16 and #101 [132]. Several CO2-EOR field tests have also
been carried out in other fields including Jilin, Dagang,
Shengli, and Liaohe (see Figure 6), with recovery increasing
to about 10% [118, 121, 132–137]. Compared with the status
of CO2-EOR technology in the US, extensive application of
CO2-EOR in most oilfields of China may be difficult as the
geologic structure ofmost reservoirs is characterized bymany
faults and low permeability [138]. Besides, a lack of policy
and regulatory incentives, high commercial uncertainty, and
technical challenges affect the rapid development of the CO2-
EOR technology in China.

4.3. CCUS: CO2-ECBM in China. While studies on CO2-
ECBM technology first started in the 1990s, China began its

basic research in this field (including adsorption, desorption
and swelling mechanisms in the coal matrix, and the two-
phase gas flow of CO2 and CH4 in different types of coal
rocks) at the end of 20th century [139–145]. This research
was further extended to include the CH4 displacement
mechanisms by using a mixture of CO2 and N2 [41, 146–151].
Based on the well test data for coalbed methane production
in China, the recovery is in the range of 8.9%–74.5%, with
an average value of 35%. By using CO2-ECBM technology,
the recovery can be increased to 59% [152]. Based on the
preliminary evaluation of [153], the recoverable coalbed
methane can increase to 1.632 × 1012m3 with CO2 storage
amount of about 120.78× 108 tonnes for the coalbed at a depth
ranging from 300 to 1500m.

4.4. CCUS: CO2-EGR inChina. According to the results from
the third oil and gas reserve investigation, if 75%of the porous
volume derived from gas production is used for CO2 seques-
tration, there will be a potential for a CO2 storage capacity
of 5.18 billion-tons [9, 154]. However, the gas industry in
China started late and gas production is low, which means
that there will not be many depleted gas reservoirs in the
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12 Geofluids

short term, limiting the possibility of a commercial scale
application of the CO2-EGR technology. From the maturity
point of view of this technology, very few research institutes
in China are working on the improvement of CO2-EGR at the
present. Furthermore, the early breakthrough of CO2 in gas
production wells makes it difficult to attain good production
efficiency from the application of CO2-EGR technology [47].
A means of reducing the costs of separating the mixed gases,
CO2 andCH4, is required to attain thewidespread application
of the CO2-EGR technology in China.

4.5. CCUS: CO2-ESG in China. Encouraged by the successful
exploitation of shale gas in North America, China joined the
exploration of shale gas in 2005 [155]. The published data
from the Ministry of Land and Resources in 2002 confirms
that China had a shale gas reserve of 25.1 × 1012m3. By the
end of 2015, China had a technical shale gas reserve of about
1.3 × 1011m3 including the increased proved technical reserve
of 1.09 × 1011m3.

In December 2010, China drilled its first shale gas
exploration well, Wei201 in Weiyuan gas field [155]. In May
2012, the first shale gas horizontal well in China was drilled
and operated by Yangchang oilfield, demonstrating a great
breakthrough in the hydraulic fracturing technology for shale
gas reservoirs. By the end of 2012, China’s total shale gas
production was 2.5 × 107m3, which increased to 2.0 × 108m3
in 2013, 1.3 × 109m3 in 2014, and 4.47 × 109m3 in 2015.
The production of shale gas in China has increased greatly
during the last few years, especially from the Peiling shale
gas field in Chongqing with a proved reserve of more than
1.0 × 1011m3. It has produced shale gas of about 1.03 ×
109m3, becoming the largest commercial shale gas field in
China.

However, high production costs, a large amount of water
consumption and a breakthrough in some key technolo-
gies related to shale gas production will restrict large-scale
production in the near future [102]. In 2012, the National
Energy Administration of China set a target for shale gas
production of 6 × 1010–1.0 × 1011m3 by 2020. But after a
two years’ practical experience during 2012-2013, it revised
this target to 3.0 × 1010m3 by 2020. Using CO2 to enhance
the recovery of shale gas is now at an early exploration stage
[156].

4.6. CCUS: CO2-EGS in China. The 863 plan project that
aims at investigating EGS was initiated by Jilin University
in 2012 [157]. There are now several other projects in the
country using CO2 in geothermal production (see Table 1).
This demonstrates that China is interested in developing
EGS to exploit the deep geothermal resources from the hot
dry rocks. Many Chinese researchers (e.g., [143, 158–162])
have already studied the operation mechanisms of the CO2-
EGS system and its optimization designs. A preliminary
site selection system considering the role of CO2 in the
geothermal production was set up by [26]. Research in this
technology is still at the very early stage and requires detailed
work to attain pilot scheme status.

5. Status of CCUS Engineering
Projects in China

The CO2 emission sources are mainly located in the middle-
eastern regions of China; see details in Figure 2.15, [34].
Therefore, pilot-scale CCUS (mostly CO2-EOR) engineering
projects in China are also located in these regions (Figure 7,
Table 3). Based on published government and industrial
reports and personal communications, the progress of pilot-
scale CCUS engineering projects in China is as follows:

(1) ACO2-EORfield test was executed for the first time in
Daqing oilfield in 2003. In recent years, the industrial
injection of CO2 and the production of oil with the
help of CO2-EOR technology operated by the Daqing
oilfield aremainly located in the Yushulin andHailaer
oilfields.

(2) A CO2-EOR project with a CO2 injection amount
of 0.8–1 million tons/year in Jilin oilfield (still in
operation) since 2005 for the exploitation of the CO2-
rich (21% CO2 concentration) Changling gas field. A
CO2-EOR experiment has been carried out by Jilin
oilfield in 2006 andoil recovery enhanced by 8%–10%.
The Changling gas field was the first project to
integrate natural gas production, CO2 sequestration,
and EOR technology [7]. As the conventional water
injection method does not provide good production
efficiency in low permeable oilfields, CO2-EOR has
played a large role in increasing production, such
as in the Fuyang oilfield [137]. By March 2017, oil
production increased to 100 kilotons by injecting 1.1
million tons of CO2 underground.

(3) A full chain pilot-scale CO2-EOR project has been
injecting CO2 at a rate of 40,000 tons/year in the
Shengli oilfield (still in operation). The Sinopec
Shengli oilfield cooperated with the Shengli power
plant to install the largest equipment for capturing
exhaust gases in a coal power plant [163]. Its purpose
is to reduce CO2 emission by 30 kilotons/year and
enhance oil recovery by 20.5%. This project started
in 2008 and about 251 kilotons of CO2 had already
been injected in the ultralow permeable oil reservoir
through 11 injection wells by April 2015.

(4) A CO2-EOR project operated by Zhongyuan oilfield
(still in operation) injected CO2 at a rate of 30,000
tons/year and managed to increase oil production by
3600 tons after injection of 2170 kilotons of CO2 and
827 kilotons of water [7]. By February 2017, a total
amount of about 553 kilotons of CO2 was injected
underground. As a result, oil recovery is proved to
have enhanced by 10% in the Zhongyuan oilfield and
by 60% in the Shayixia oilfield after the pilot-scale test.

(5) The CO2-EOR project led by the Yangchang oilfield
company was carried out in 2013 using captured CO2
during the production of methanol and acetic acid.
At present, the capture equipment designed for 360
kilotons/year of CO2 is under construction. Pilot-
scale CO2-EOR field tests have been done in some
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Figure 7: Distribution of CCUS engineering projects in China excluding the South China Sea Islands (numbers defined in Table 3)
superimposed on the provincial CO2 emission map for the year 2010 (from [34]).

districts of Jinbian and Wuqi, with a total of 90
kilotons CO2 injected.

(6) As the first demonstration of IGCC power station in
China, the first stage of the IGCC project at Tianjin
combined with the CO2 capture and EOR technology,
with an installation capacity of 265MW, has been in
operation since November 2016.

(7) The CO2-ECBM project located in the Qinshui
basin of Shanxi Province operated by China United
Coalbed Methane Corporation, Ltd (completed) [7,
164]. It is the only pilot-scale CO2-ECBM field test
in China and operates at an injection rate of 40
tonnes/day of CO2. This is a cooperation project
between the Zhonglian coalbed methane Ltd and

Canada which aims at studying the feasibility of CO2-
ECBM in China [53].

(8) The full chain CCS project in the saline formations
located in the Ordos of the Inner Mongolia (com-
pleted). This is the first full chain CCS project in
China, with a capital investment of more than 28.6
million US$. The drilling of one injection (with a
completion depth of 2826m) and two monitoring
wells (31 and 70m away from the injection well)
started in 2010. Since September 2011 until 2015, a
total amount of 300,000 tons CO2, produced by the
coal liquefaction factory of the Shenhua Group, has
been transported by oil tankers and injected in four
saline formations and one carbonate formation [165].
The first stage of injection test started in 2011, with

 6816, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2017/6126505 by U

niversity O
f Florida, W

iley O
nline L

ibrary on [28/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 Geofluids

the wellhead injection pressure ranging from 6.79
to 8.63MPa. The second production test started in
2012 with varying injection rates of 6m3/h, 9m3/h,
12m3/h, and 15m3/h and constant wellhead injection
pressure of 5.7MPa and temperature of 5∘C. Another
large-scale CO2 sequestration in the deep saline for-
mations located in Lianyungang of Jiangsu Province
is in preparation.

(9) A CO2 storage project in the rock salt at Yingcheng
in Hubei Province, where CO2 will be captured by
the oxy-fuel combustion technology, is in preparation
[166].

(10) CO2 sequestration by microbe algae has also been
identified an effective means to reduce CO2 concen-
tration in the atmosphere. The two representative
CO2 sequestration projects using microbe algae are
the Xin’ao and Qinghua groups both from China.

In the next few years, CO2-EOR engineering projects
will still be the most important CCUS technology in appli-
cation. After the successful experience attained from the
pilot-scale CCUS projects so far, China is now planning to
run 13 large-scale CCUS projects. Based on the stages of
the engineering projects, the project will be divided into
the following study phases: opportunity → preliminary →
prefeasibility→ feasibility→ construction drawing design→
construction→ operation→ completed. All the stages before
the construction drawing design phase, that is, preparation of
the engineering projects, could be lumped together and called
the “evaluation” stage. Due to the current low oil price and a
lack of themotivation policy, the progress in developingmost
of these large-scale planning CCUS projects lags far behind
the schedule. Most of these projects are still at prefeasibility
or feasibility stages and some may even be cancelled.

Although capturing and industrial utilization of CO2 in
China are not the key aims of this paper, the related projects
in operation include (1) Huaneng Beijing thermal power
plant; (2) Huaneng Shanghai Shidongkou; (3) China Power
Investment Corporation Chongqing Shuanghuai; (4) CO2
project in Hainan operated by China National Offshore Oil
Corporation (CNOOC); (5) CO2 project in Jiangsu province
operated by the Zhongke CO2 Jinlong company. The CO2
pilot-scale project in Tianjin organized by China Guodian
Power is in preparation.

At present, China does not execute any CO2-EGS field
tests. However, a few engineering EGS projects exist at their
early scientific field test stages. These include (1) the hot dry
rock scientific drilling project in Zhangzhou Fujian province,
in operation since May of 2015, with a drilling depth of
4000m and a water temperature high enough for geothermal
power generation and (2) a hot dry rock scientific drilling
project in Qinghai Province, with a water temperature of
200∘Cat a depth of 3000m [157]. Studies on power generation
in traditional hydrothermal fields located in Yangyi, Xizang,
and Tengchong in Yunnan Province are also undergoing.
However, there are no active engineering projects related to
CO2-EGR and CO2-ESG in China.

6. Challenges in the Widespread Application
of CCUS in China

6.1. Tackling Problems in Key Technologies. The injection of
CO2 underground for the CCS and CCUS purposes involves
multiple physical-chemical coupling interactions of multiple
components in porous fractured media, especially the trans-
mission and migration of fluids between porous media with
a low/ultralow permeability and complex fractured network.

(a) There aremature commercial CO2-EOR technologies
in the USA and Canada. In China, however, because
of the strong heterogeneity in oil reservoirs, the
CO2 channeling effect is serious [138]. Therefore,
improving the sweep efficiency is the key to attaining
widespread application of CO2-EOR in China. Other
efficient methods include the alternating injection of
water and CO2 (WAG) and the addition of foaming
and gelling agent [132].

(b) There are currently no commercial scale CO2-ECBM
engineering projects being developed anywhere in the
world. In China, studies on CO2-ECBM technology
are at a very early stage of exploration. More research
is required to tackle key problems like the adsorption-
desorption process between CH4 and CO2 in the coal
seam [46, 146, 147], themechanisms of the interaction
between CO2-CH4-H2O at molecular scale [150],
the impact of the coal grade, water content and
composition of coal, and so on on the diffusion
and migration of mixed gases in the coal seam,
the dynamic changes of phase behaviour during the
process of CO2 injection, and CH4 production and so
on.

(c) In the application of the CO2-EGR technology, more
effort is required to prevent the early breakthrough
of CO2 into the production well, thus enhancing
the sweep efficiency of CO2. Thus more studies are
needed like the understanding of migration processes
of the CO2 after its injection into the depleted gas
reservoir, phase behaviour, the mixing mechanism of
CO2 and CH4, and so on [48, 60].

(d) Multistage hydraulic fracturing in the horizontal wells
has been widely used in shale gas production in
China. However, this technology is still not mature
enough for the production of shale gas at depths
>3500m. The large amount of water consumed in
the production of shale gas is a big challenge for
its large-scale production, especially in southwestern
China, where the existing water resources are very
poor. Using CO2 as the fracturing fluid has become
a research hot spot in China [167]. Injection of CO2
to extract brine or methane energy from the aquifers
was also studied recently [168].While the feasibility of
using CO2 to enhance shale gas recovery still requires
more research and field tests.

(e) The direct use of geothermal energy in China has
been the priority during the last few years, while its
use for power generation largely lags behind that of
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several countries, such as the USA, the Philippines,
Japan, and Indonesia. Technologies including CO2-
AGES, EGS, and binary cycle power plants may
have a positive effect on the development of China’s
geothermal power system. However, before obtain-
ing mature engineering experiences, China needs
to enlarge its investment in human, physical, and
financial resources in these technologies.

6.2. Negative Impacts on the Environment and Resources. The
risk of leakage of the injectedCO2 in the injection/production
wells may have a serious environmental impact [169–173].
The groundwater quality may deteriorate if the CO2 in the
injection layer leaks into the freshwater aquifer through
microfractures or faults [174, 175].When hydraulic fracturing
is applied to shale gas or geothermal energy production, it will
induce microseismic events. In addition, the toxic chemical
additives in the hydraulic fluid may have a serious negative
impact on freshwater aquifers when they leak into the shal-
low layers because of possible geological hazard. Therefore,
a long-term environmental monitoring activity should be
carried in parallel with the CCUS engineering project to
ensure its safety [104]. The dynamic migration process of
CO2, chemical interaction among CO2 -reservoir fluid-rock,
the deformation or eruption of injection/overlying caprocks,
and temperature and pressure changes in the reservoir should
be monitored for a long time after the injection [29, 176].

6.3. Storage Capacity Data Is Not Clear. The total amount
of resources and the distribution of depleted oil and gas
fields, deep unmineable coal seams, deep saline formations,
shale gas, and rock salt reservoirs are not clearly known
because of the inadequacy of the geological data. Thus to
attain a widespread application of CCUS technologies, more
accurate evaluationwork should be done based on geological,
geophysical, geochemical, rock mechanics data, and so on.

6.4. Policy Factor. The positive effect of China’s involvement
in CCUS technologies in recent years has been to focus on
developing CO2-EOR, the capture of CO2, the shale gas and
hot rock geothermal energy production, and especially shale
gas production with a subsidy of 4US¢/m3 during 2016–2018
and 3US¢/m3 during 2019-2020. However, other fields of
CCUS also need to be supported by the government.

6.5. High Investment Costs. The cost of a CCS or CCUS
projectmainly includes CO2 capture, transportation, drilling,
injection, and monitoring. Costs for the capture of CO2
produced by the technologies of precombustion, postcom-
bustion, or oxy-fuel combustion take the largest proportion
in the investment of a specific CCS or CCUS project. Taking
a coal-fired power station as an example, if 80% of the CO2
emitted is captured and compressed to a certain pressure, its
energy consumption will increase by 24%–40% [177]. In the
US, the price of electricity generated from a coal-fired power
station is 82–99US$/MWh and 83–123US$/MWh without
and with the CO2 capture technology, respectively, [178].
Depending on different situations and technologies in US,
the capture cost is 42–87US$/ton CO2, transportation costs

range from 4.3 to 7.2US$/ton CO2/250 km, while injection
and storage costs are 1–12US$/ton CO2 based on the prices
in 2013. In China, the cost of electricity generation by coal-
fired power station increases by 30%–50% using CO2 capture
technology due to the extra consumption of electricity and
steam. Taking the Huaneng Beijing coal-fired power station
as an example, the capture price is about 24.3US$/ton CO2,
with the CO2 capture efficiency of 80%–85% [179]. On
the other hand, simulation results of the IGCC coal-fired
power station with the CCS technology in Tianjin show
the capture price to range from 21.3 to 24.8US$/ton CO2,
accounting for 80% of the price of a full-scale CCS project
[180, 181]. However, the uncertainty in the CO2 capture price
is high depending on different capture technologies including
precombustion, postcombustion, and oxy-fuel combustion at
various stationary point sources including coal-fired power
stations, cement factories, and coal chemical industries. From
the aforementioned point of view, the uncertainty in the
investment of a specific CCS or CCUS engineering project is
determined by the cost of CO2 capture.Therefore, a reduction
in the cost of CO2 capture is the key to the widespread
application of CCS or CCUS technologies. Besides, drilling
costs are large for all types of CCUS engineering projects and
hydrocarbon/geothermal production, taking a shale gas well
as an example, it costs 5.8 million US$ for a drilling length
of 2500–3000m, and 0.72 million US$ for a general gas well.
The drilling cost of a geothermal production well in a hot
dry rock will be much higher.The corrosion property of CO2
requires a high quality of pipelines and ground equipment,
increasing the production costs of oil, gas, and geothermal
energy [182, 183].

6.6. Energy Price. The slump in the international oil price
has greatly affected the investment in the oil/gas production
and CCUS projects. Shale gas production in Peiling shale gas
field in southwestern China with good geological conditions
and large reserves is just above the breakeven point. If the
oil/gas price remains low in the future, many industries
will be unwilling to invest in these kinds of projects. With
the exception of CO2-EOR, it is difficult to profit from
other CCUS projects. Due to completion from the increased
installation capacity of wind and solar energy that have been
much easier to make an economic return in recent years,
the development in geothermal power generation will be
continuously limited because of the difficulty in returning an
economic benefit.

6.7. Social Acceptance. This is the biggest challenge for any
CCS or CCUS project. It has a substantial impact on political
decision makers and the implementation of energy projects
such as nuclear power and wind energy programs [184]. It
is the same for CCS and CCUS projects, and some CCS
exploration activities in Schleswig-Holstein and Vattenfall
Janschwalde in Germany, the Belchatow project in Poland,
and so on were postponed or cancelled because of the lack
of public acceptance over the exploration of storage sites
[185, 186]. As the most unfamiliar technology to the general
public in China, CCUS technology has been reluctantly
accepted when compared with other low carbon technologies
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including wind power, solar power, energy efficiency, or
biomass for reasons of climate change mitigation [10, 187].
However, there is now a positive attitude towards CCUS
policies in China. In order to stimulate public acceptance,
the uncertainties regarding safety and environmental risks
involved in CCUS will have to be reduced at the beginning
of the development stage of any CCUS technology [188].
However, this will be largely dependent on the innovation
of long-term monitoring techniques in both operating and
planned pilot projects [189, 190].

7. Conclusions

(1) Many countries have participated in activities to tackle
global climate changes during the last few years. The total
CO2 emissions for China in 2005 were 59.76 × 108 tonnes,
accounting for 80.03% of the greenhouse gas emission of
China in 2016. To perform its social responsibility, China
plans to reduce its CO2 emission per unit of GDP by
40%–45% in 2020 compared with the 2005 level. Therefore,
on one hand, China needs to change its current energy
framework by reducing the consumption of fossil fuels like
coal energy, or applying a clean coal program, capturing
the CO2 produced by the combustion of coal. On the
other hand, China needs to develop the renewable energy
sector, including wind energy, solar energy, and geothermal
energy.

(2) The serious air pollution problems in recent years are
forcing the government of China to pay more attention to
the development of green and clean energy aimed at saving
energy and reducing the emissions of greenhouse gases.
Some local governments have increased their investment
in modern coal-fired power station coupled with the CCS
technology. The CCUS engineering projects, especially those
related to EOR, are also developing fast.

(3) Traditional CCS projects can store a large amount
of CO2, captured from large-scale point source emission
sites, deep underground, thus effectively decreasing emis-
sions in the atmosphere. CCUS is more attractive than
the CCS technology in China because of the economic
benefits accrued by using the CO2. China has large reserves
of low permeable oil and gas reservoirs. The conventional
water injection methods cannot achieve good production
efficiency in such reservoirs; therefore the CO2-EOR and
CO2-EGR will have a great potential in enhancing the
recovery of oil and natural gas in low and ultralow perme-
able reservoirs, as well as storing CO2 in the underground
space. The CCUS technology will play a considerable role
in controlling the reduction of CO2 emissions related to
coal-fired power stations and the coal chemical industry.
For a long period of time, coal will remain the main
energy source in China; thus CCUS technology is very
important for cleansing the coal-based industry. CO2 has
the potential to be used in the production of geothermal
energy because of its favorable physical properties including
large density and small viscosity. In addition, studies on
replacing water by supercritical CO2 as the fracturing fluid
in the oil/gas/shale gas reservoirs are currently being carried
out by many researchers. If this method is proved to be

feasible, it will greatly decrease water consumption in the
production of shale gas.This is particularlymeaningful in the
western regions of China where there is lack of groundwater
resources.

Nomenclature

ACCA21: Administrative Center for China’s Agenda
21

ADB: Asian Development Bank
CAS: Chinese Academy of Sciences
CCERC: China-U.S. Clean Energy Research Center
CCS: Carbon capture, sequestration, or storage
CCTV: China Central Television
CFHEG: Center for Hydrogeology and

Environmental Geology of Chinese
Geological Survey

CCUS: Carbon capture, sequestration, and
utilization

CLEAN: CO2 Large-scale Enhanced Gas Recovery
project in the Altmark Natural Gas Field

CNOOC: China National Offshore Oil Corporation
CNPC: China National Petroleum Corporation
CO2-AGES: CO2 aided geothermal extraction system
CO2-ECBM: CO2 enhanced coalbed methane recovery
CO2-EGR: CO2 enhanced gas recovery
CO2-EOR: CO2 enhanced oil recovery
CO2-ESG: CO2 enhanced shale gas recovery
CRS: Chromium Reducible Sulfur recovery

technology
CSLF: The Carbon Sequestration Leadership

Forum
CUCMC: China United Coalbed Methane

Corporation, Ltd
DFZ: Deutsche Friesenpferdezuchter
DEFRA: UK Department for Environment, Food

and Rural Affairs
FCC: Fume from Catalytic Cracking
GCCSI: Global Carbon Capture and Storage

Institute
GDP: Gross Domestic Product
IEO: International Energy Outlook
IGCC: Integrated Gasification Combined Cycle

(IGCC)
IPCC: Intergovernmental Panel on Climate

Change
K12B: K12B gas field located at the North Sea
MOST: The Ministry of Science and Technology

of China
NSFC: The National Natural Science Foundation

of China
NZEC: China-EU Cooperation on Near Zero

Emissions Coal project
RECOPOL: Reduction of CO2 emission by means of

CO2 storage in coal seams in the Silesian
Coal Basin of Poland

SNG-EOR: Synthetic Natural Gas-Enhanced Oil
Recovery

USDOE: United States Department of Energy.
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